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Machine Learning: Fundamentals

A model is a formal description of a belief about the world.
Learning is the construction and/or revision of a model in 

response to observations of the world.

The mathematical/statistical foundation of machine learning:
❐ Bayesian inference: how to learn from observations (today)
❐ maximum likelihood: how to quantify the fit between a 

model and observations (next week)
❐ optimization: how to improve the fit of your model
❐ regularization, model selection: what is the best model?
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Bayesian
Inference

Rev. Thomas Bayes (1702-1761)
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What is a Probability?

Technical answer:
any number P that obeys the axioms of probability:

❐ must lie between zero and one: 0 · P · 1
❐ must add up: P(A + B) = P(A) + P(B) – P(AB)

(P(AB) = 0 when A and B are mutually exclusive)
❐ must sum to one for mutually exclusive and collectively 

exhaustive alternatives

P(A + B) = P(“A or B”)
P(AB) = P(A×B) = P(“A and B”)
P(Ā) = P(“not A”) = 1 – P(A)
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Interpretations of Probability

There are two interpretations of probability in statistics:
❐ frequentist: probability is the limit of observed frequency as 

number of observations goes to infinity. It is purely descriptive.
Example: “70% of November days in Zürich are rainy”

❐ Bayesian: probability is a “degree of confidence” that one 
attaches to an uncertain event (Bernoulli, 1654-1705). It can be 
manipulated, for instance by applying Bayes’ Rule.
Example: “there is a 30% chance of rain tomorrow”

Both respect the axioms of probability. For machine learning the
Bayesian view is crucial, since it allows us to update measures 
of belief (models!) in response to observations – that is, to learn.
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Example: Coin Tosses

For a given coin, what is the probability of coming up heads?
❐ frequentist: toss the coin many times

P(heads) ≈ #heads / #tosses   (can also quantify uncertainty)

❐ Bayesian: probability is a measure of belief. Use prior
knowledge of coins to initially assume P(heads) = 0.5;
revise this model of the coin in response to observations if 
necessary. (Bayes’ rule will tell us exactly how to do this.)
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Conditional Probability

P A B
P A B

P B
( | )

( )
( )

=
 and 

P(A|B) is read “probability of A given B”, meaning:
the probability of A, given that B has already occurred.

Example: in a given country, 90% of households own a TV, 
and 54% own both a TV and VCR. What is the probability 
that a household with TV also owns a VCR?

P(VCR | TV) = P(VCR × TV) / P(TV) = 0.54 / 0.9 = 0.6
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Conditional Probability

We can rearrange the above to read:

P(AB) = P(A|B) P(B)

Note that if A and B are independent, we have

P(AB) = P(A) P(B),    so  P(A|B) = P(A).

Furthermore we always have

P(AB) = P(BA)

⇒ P(A|B) P(B) = P(B|A) P(A)
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Derivation of Bayes’ Rule

P(A|B) P(B) = P(B|A) P(A)

Since P(B) = P(BA) + P(BĀ) = P(B|A) P(A) + P(B|Ā) P(Ā),

This is the simplest form of Bayes’ Rule.

P(B)
P(A) A)|P(B    B)|P(A  =⇒

)AP( )A|P(B  P(A) A)|P(B
P(A) A)|P(B    B)|P(A

+
=
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Bayes in Action: Coin Tosses

Let A = “coin is fair”, Ā = “coin is double-headed”
(let’s ignore other possibilities for now).

Assume prior: P(A) = 0.9

First coin toss: heads (H)
P(H|A) P(A) = 0.5 · 0.9 = 0.45
P(H|Ā) P(Ā) = 1.0 · 0.1 = 0.1 

Note how we have used the observation H to update our 
model  (that is, belief in the fairness) of the coin.
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More Coin Tosses

Second coin toss: heads again! (HH)
P(HH|A) P(A) = 0.25 · 0.9 = 0.225
P(HH|Ā) P(Ā) =   1.0 · 0.1 = 0.1 

third toss:

P(A|HHH) ≈ 0.53 

after the 4th head in a row, we are more inclined
to think the coin is double-headed than fair:

P(HHHH|A) P(A) = 0.0625 · 0.9 = 0.05625

69.0
1.0225.0

225.0HH)|P(A ≈
+

=

36.0
1.005625.0

05625.0HHHH)|P(A =
+
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Faith Restored?

a weaker prior - say, P(A) = 0.8 - would have caused us to 
lose faith in the coin sooner: P(A|HH) = 0.5.  Conversely, a 
stronger prior would have caused us to hold out longer.

Even after a million “heads” though, a single “tail” suffices 
to restore our faith in the fairness of the coin:

P(HHH…T|Ā) P(Ā) = 0 · 0.1 = 0  ⇒ P(A|HHH…T) = 1

If this seems inappropriate, it indicates that our prior did 
not capture our actual prior knowledge of coins: we should 
allow for double-tailed or bent coins, lying lecturers, etc.
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Posterior belief
given observations

Evidence: used as a
normalization factor

Prior belief
Likelihood of observa-
tions given the model

Bayes‘ Rule: General Form

P(B)
P(A) A)|P(B    B)|P(A =

When used for inference:

A: “Annahmen” (model)

B: “Beobachtungen” (data)
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Using the Posterior

The posterior can be used
❐ to make predictions: example – what is the probability of 

“heads” on the third coin toss, given that “heads” came up 
twice before already?   
P(H|HH) = P(H|HH,A) P(A|HH) + P(H|HH,Ā) P(Ā |HH)

= 0.5 · 0.69 + 1.0 · (1.0 – 0.69) = 0.655
❐ to make decisions: example – after “heads” comes up for 

the third time, is the coin fair?  Answer: yes, since
P(A|HHH) = 0.53,   but   P(Ā|HHH) = 1.0 – 0.53 = 0.47
(When forced to decide: minimize the risk of being wrong
by picking the alternative with the highest posterior.)

Machine Learning I www.icos.ethz.ch 14

The Normalization Factor

P(B) is the same for all alternatives Ak ⇒ doesn‘t affect
which is best ⇒ can be ignored for decision problems

Otherwise:

for discrete, mutually exclusive and exhaustive

alternatives Ak: P(B) = ∑k P(B|Ak) P(Ak)

for a continuous spectrum of alternatives A:

P(B) = ∫ P(B|A) P(A) dA
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Real-Valued Observations

x

p x a( | ) p x b( | )
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More Than Two Alternatives

❐ decision regions R1, R2, R3, ...



9

Machine Learning I www.icos.ethz.ch 17

Ambiguous Observations

❐ example: speech recognition system

❐ Both sentences sound the same. How should we decide?

C1: “This machine can
recognize speech”

C2: “This machine can
wreck a nice beach”
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Use Prior to Disambiguate

❐ Be smart about your priors! Here: use a language model.

p x Ck( | )

= x

P Ck( )
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Smart Priors

❐ another example: image recognition

❐ given your experiences in this lecture, how would a smart 
prior for coin tosses look like?
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A Two-Stage Process

Bayesian inference thus comprises two equally important stages:
❐ Construct the prior: use all available prior knowledge to 

build a good model that lays out all plausible avenues for the 
inference machinery to explore.

❐ Infer the posterior: use Bayes’ Rule to update the model in 
response to the available observations.

The same applies to all machine learning: finding a good way to 
incorporate prior knowledge is an important (though difficult, 
and often neglected) aspect of the problem.

Much of machine learning is in fact built upon the foundation of
Bayesian inference – more next week.


