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Accelerating Evolutionary Algorithms with
Gaussian Process Fitness Function Models

Dirk Biiche, Nicol N. Schraudolph, and Petros Koumoutsakos

Abstract— We present an overview of evolutionary algorithms
that use empirical models of the fitness function to accelerate
convergence, distinguishing between evolution control and the
surrogate approach. We describe the Gaussian process model
and propose using it as an inexpensive fitness function surrogate.
Implementation issues such as efficient and numerically stable
computation, exploration versus exploitation, local modeling,
multiple objectives and constraints, and failed evaluations are ad-
dressed. Our resulting Gaussian process optimization procedure
clearly outperforms other evolutionary strategies on standard test
functions as well as on a real-world problem: the optimization
of stationary gas turbine compressor profiles.

Index Terms— evolutionary algorithms, fitness function mod-
eling, evolution control, surrogate approach, Gaussian process,
gas turbine compressor design

I. INTRODUCTION

HE cost of optimizing expensive problems is dominated

by the number of fitness function evaluations required
to reach an acceptable solution. For evolutionary algorithms,
various approaches exist to reduce this cost by exploiting
knowledge of the history of evaluated points. This knowledge
can for instance be used to adapt the recombination and
mutation operators in order to sample offspring in a promising
areas. Thus the covariance matrix adaptation (CMA) algorithm
[1], [2] uses the path of successful mutations to build up a
covariance matrix; the new population is then sampled with
this covariance.

Knowledge of past evaluations can also be used to build
an empirical model that approximates the fitness function to
optimize. The approximation is then used to predict promising
new solutions at a smaller evaluation cost than the original
problem. The prediction quality generally improves with a
growing number of evaluated points in the optimization pro-
cess. Such models are also referred to as surrogates [3], [4],
response surfaces (especially for polynomial approaches), or
metamodels [5], [6]. A prerequisite for using them is that the
expense of model construction and prediction is lower than
evaluating the fitness function; they are thus used primarily
for expensive optimization problems.
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II. MODELS IN EVOLUTIONARY ALGORITHMS

There are two main ways to integrate models into an
evolutionary optimization. In the first, a fraction of individuals
is evaluated on the fitness function itself, the remainder
merely on its model. Jin et al. [7] refer to individuals that
are evaluated on the fitness function as controlled, and call
this technique evolution control. In the second approach, the
optimum of the model is determined, then evaluated on the
fitness function. The new evaluation is used to update the
model, and the process is repeated with the improved model.
This surrogate approach evaluates only predicted optima on
the fitness function, otherwise using the model as a surrogate.

A. Evolution Control

In evolution control [7], a controlled fraction of individuals
are evaluated on the fitness function, the remainder only on the
model. Assuming perfect approximation of the fitness function
by the model, and computational cost dominated by the fitness
function evaluation, this produces a relative reduction in cost
equal to the fraction of uncontrolled individuals. Various im-
plementations can be distinguished according to their selection
of controlled individuals. Jin et al. [7] define two main classes
of control rule: in individual-based evolution control a fraction
of each population is controlled, while in generation-based
evolution control the entire population is either controlled or
uncontrolled.

In individual-based evolution control it is still an open
question which of the individuals should be controlled, and
the fraction of controlled individuals varies between 10%
[5] and 50% ([8]. Jin et al. [8] state that when randomly
controlling individuals, about 50% of the offspring need to be
controlled. When pre-evaluating all solutions on the model,
then evaluating the best individuals on the fitness function,
Giotis et al. [9] and Jin et al. [8] control about 40% of the
population. Emmerich et al. [5] show that for simple problems
such as, e.g., a symmetric quadratic function, controlling the
best 10% of pre-evaluated individuals is sufficient.

For more complex problems such as multimodal or cor-
related functions, however, their algorithm easily gets stuck.
They address this problem by using a merit function as
proposed by Torczon and Trosset [3]. Merit functions are
a weighted sum of the model prediction and a negative
density measure. The density measure promotes unexplored
regions, i.e., areas where no points have yet been evaluated.
Thus, merit functions balance the goal of finding promising
solutions (exploitation) with improving the model by obtaining
information about new regions (exploration), thus decreasing
the risk of premature convergence [3], [10].
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Beltagy and Keane [11] employ Gaussian process models
[12], which provide an uncertainty measure (in terms of a
standard deviation) along with the predicted fitness function
value. They only control individuals whose predicted standard
deviation exceeds a certain limit, assuming the model predic-
tion to be accurate otherwise. The limit is decreased linearly
over the course of the evolution.

In generation-based evolution control, the entire population
is evaluated on either the model or the fitness function; this
allows for better parallelization. Again, various rules have
been developed to determine which generations to control.
Ratle [13] controls the first generation of his GA; subsequent
generations are evaluated only on the model until the model
predictions do not improve for a given number of generations.
The next generation is again controlled. Compared to the
original GA, this approach accelerated convergence for uni-
and multimodal functions. Jin et al. [14] control generations
until the error between model prediction and fitness function
drops below a certain threshold. The population then remains
uncontrolled for a given number of generations before control
resumes.

For both control methods several questions remain open.
First, there is disagreement about which and how many
individuals of a population need to be controlled. Then it is not
clear whether all or just a fraction of evaluated points should
be used for model construction, so as to perform a global [11],
respectively local (i.e., recent) approximation [5]. The model’s
complexity must also be appropriate for the amount of data
used in order to avoid overfitting the data.

Finally, inexact model predictions may mislead the se-
lection operator to propagate inferior individuals. This may
be especially detrimental to optimization algorithms that are
themselves adaptive. We hypothesize:

The more information from the population is ex-

ploited by the evolutionary algorithm (e.g., to adapt

the mutation distribution), the higher the fraction of

controlled individuals has to be in order to provide

sufficient information for the adaptation process.
In other words, evolution control is based on the assumption
that the evolutionary algorithm needs very little information,
which can be provided by evaluating (controlling) just a
fraction of the population. However, this argumentation holds
only for those inefficient algorithms that indeed use little
information — for “smarter” algorithms such as CMA [1], [2]
that pull much more information out of a population, we expect
that virtually all individuals must be controlled.

The success of evolution control is thus highly dependent
on the fraction of controlled individuals, which is difficult to
determine as it depends on both the fitness function complexity
and the optimization algorithm. It is always a compromise
between avoiding the computational cost of fitness function
evaluation and the danger of a poor model misleading the
optimization [14].

B. Surrogate Approach

In the surrogate approach, a fitness function model is
constructed for an initial training set of evaluated points. An
optimization algorithm then searches for the optimum of the

model’s fitness prediction. The predicted optimum constitutes
an ideal candidate for an improved solution to the problem, and
is therefore evaluated on the fitness function. The result of the
evaluation is added to the model’s training data, facilitating an
improved approximation of the fitness function by the model.
The procedure then iterates by searching for the optimum
of the improved model. This surrogate approach has been
discussed by Torczon et al. [3]; similar methods can be found
in [15], [13], [16], [10].

Similar to evolution control, the surrogate approach is in
danger of getting stuck in a local minimum unless points
in unexplored regions of the search space are added to the
model’s training set. Thus, merit functions (or similar tech-
niques) are also in use here [3], [10]. Open issues again include
the question of whether global or local modeling should
be preferred. For local models, the search for the optimum
must be limited to the region that is well-approximated by
the model. The potential reduction in computational cost
is higher for the surrogate approach than for the evolution
control, especially once enough data is available to allow for
construction of a model that is accurate near the true optimum.
Since the surrogate approach proceeds sequentially from one
predicted optimum to the next, however, it is more difficult to
parallelize.

C. Empirical Models

A wide variety of empirical models are used in the literature
as fitness function models for an optimization procedure. The
most prominent among them are polynomial models [17],
artificial neural networks [8], radial basis function networks
[18], [10], and Gaussian processes [13], [7], [11], [5].

Polynomial Models: Polynomial fitness function models —
also referred to as response surfaces—can easily be fitted
to data with a least squares approach (see, e.g., [17]). The
order of the polynomial is important: quadratic or cubic
polynomials are mainly used, with quadratic polynomials best
suited for continuous, unimodal problems. Since higher-order
polynomial fits tend to oscillate too much, multimodal shapes
are better approximated by splines, i.e., piecewise polynomial
fits with continuity constraints at the boundaries.

Artificial Neural Networks: Artificial Neural Networks
(ANNS) [19] consist of a large number of highly intercon-
nected processing units, each aggregating information from a
large number of connected peers. Given a sufficient number of
units, an ANN can approximate any function. An ANN can be
trained by adapting the weights that specify the amplification
of signals between connected units. Among the most popular
training algorithms for ANNS is error back-propagation [20].

A major disadvantage of ANNSs is that the resulting weights
of the trained network are difficult to interpret. Another
problem is the difficulty of finding an appropriate network
topology and size. In order to avoid both underfitting (i.e.,
bad approximation of the training data) resulting from too
small networks, and overfitting (i.e., bad generalization) due
to too large networks, often several networks of different size
and/or topology must be trained [21], and their performance
compared on a separate set of test data to estimate their
generalization properties.
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Radial Basis Functions Networks: The output of a Radial
Basis Function Network (RBFN) [19] is a weighted sum of
radial basis functions, each characterized by its center p €
R™ in the design space, and a function which declines with
increasing distance from the center. With Gaussian radial basis
functions, for instance, the output ¢y of an RBFN is given by

Zw exp( |'UZ _XH ) ) (1)

where Npg is the number of radial basis functions, w; their
weights, p; their centers, and r their rate of decay. Often
each given data point is used as the center of a radial basis
function. The weights are obtained by a least squares fit similar
to the polynomial approach [19], [10]. A major difficulty in
RBFNs is to set the decay parameter r, which has a large
impact on the approximation. Only limited theory and some
empirical formulae exist to address this problem. In [10], the
decay parameter is set as:

T = dmax (n NR)_l/n ) (2)

where dy,.« is the maximal distance between the data.

Gaussian Processes: Gaussian processes (GPs) [12] specify
a probabilistic model over a given set of data points, con-
structed such that the likelihood of the function value given the
decision variable values is maximized for all data points. This
model can then be extended to predict the mean and standard
deviation of the function value at new data points. GPs have
a small number of hyperparameters which can be set by the
user, or optimized via a maximum likelihood approach.

Like ANNs, GPs can approximate any function. Their main
advantage over ANNSs is their simplicity: no network size or
topology must be chosen. In contrast to the weights of an
ANN, the hyperparameters of a GP have intrinsic meaning —
specifying, e.g., typical length scales—and can therefore be
set using prior knowledge of the problem, such as noise levels,
location of discontinuities, efc. One drawback of GPs is their
computational cost: for N data points, it takes O(N?®) steps
to construct the GP, O(NN) to predict the mean function value
at a new point, and O(N?) to predict the standard deviation.

III. GAUSSIAN PROCESS MODEL

Among the above empirical models, Gaussian processes
(GPs) appear the most promising to us for fitness function
modeling, as they are the only approach to combine the
following properties: a GP does not require a predefined struc-
ture, can approximate arbitrary function landscapes including
discontinuities and multimodality, has meaningful hyperpa-
rameters, and includes a theoretical framework for optimizing
these hyperparameters. A further advantage of GPs is that an
uncertainty measure in form of a standard deviation is provided
for predicted function values; we will make use of this in our
proposed optimization procedure.

We define a GP using the notation of MacKay [12]: let
f(x) be an unknown scalar function and x € R™ a point
in an n-dimensional decision space. Evaluating f at N data
points Xy = {x1,X2,...,Xy} yields the function values
ty = {t1,t2,...,tn}, where (Vi) t; = f(x;). Note that
subscripts are used here to indicate vector and matrix sizes

(for ty and X ) as well as to index elements of those vectors
and matrices (e.g., t;, x;). The modeling task is to predict the
function value ty41 at a new point xy41. In the following
we present the main equations for GPs; for additional details
refer to MacKay [12].

The GP imposes a probabilistic model on the given data,
namely that the vector of known function values ty is one
sample of a multivariate Gaussian distribution with joint
probability density p(tx|X ). Similarly, when adding a new
point xn 41, the resulting vector of function values ty; is
assumed to be a sample of the Gaussian joint probability
density p(ty4+1]|Xn+1) = p(tn, tn+1]|Xn, Xn+1). Note that
the dimensionality of each probability density here equals the
number of data points, and is independent of the dimension-
ality of the decision space n.

Using the rule of conditional probabilities, p(A|B) =
p(A4, B)/p(B), we can write the probability density for x4
given the known data points as

pltn+1Xni1)

p(tn[Xy)
This gives the probability density for the function value ¢x
at a new data point x4+ as a univariate Gaussian, given the
N known data points, their associated function values, and the
location of the new data point. In the following we transform
Eq. 3 so as to express the distribution of ¢y 4; in terms of
its mean #y; and standard deviation o, 41+ The multivariate
Gaussian in the denominator on the right-hand side of Eq. 3
is

p(tn+1|XN+1,tN) = 3)

exp (—%t%C&ltN)

(2m)"

where Cp is the covariance matrix of the Gaussian distribu-
tion, and its mean has been set to zero. Similarly we obtain
for N 4 1 data points

p(tn|Xn) =

)
det(Cy)

exp Cyiitns
et Xyr) = S22 N]i = vutva)
Vem) N det(C i)
The covariance matrix for the N + 1 points can be written as
Cy k
CN+1( N H), (©)

where k is a vector containing the covariances between the N
known points and the new point, and « is the variance of the
new point. We will determine k and x later. Also CR,{H can

be expressed in terms of CR,l [22]:
_ M m
Cyia ( mT ) : )
where M = ijl + p 'mm7,
m = —u C]_vlk, and
©wo= (H—kTCglk)_l.

Inserting Egs. 4 and 5 into Eq. 3 gives
PltN1 X1, ty)

1 _ _
exp (2 (tACx'ty — t]T\I+ICN1+1tN+1)> , (8)
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which by the use of Eq. 7 simplifies to

1(tng1 — tn1)?
p(Int1[Xni1,ty) < exp | —c—F5—— ], )
2 Otnin
a univariate Gaussian with mean and variance given by
iny1 = k'CRltw, (10)
Oiv,, = k—kK'Cy'k. (11)

The covariance matrices Cy and Cp4; are defined by
way of a covariance function C' which embodies our prior
assumptions about the function to be modeled. Specifically,
we define the covariance between function values at two
data points x,, and x, to be given by the smooth covariance
function [12]

C(xp,%q) =

n 2
01 exp <—; 3 W) + 0y + Opby . (12)

i=1 i
Here, the first term reflects a distance-dependent correlation
between two data points: if their distance is small compared
to the length scales r;, the exponential term is close to one;
with increasing distance it exponentially decays to zero. The
hyperparameter 6 scales this correlation. In the second term,
05 specifies a certain offset of the function values from zero.
Finally, the third term adds white noise to the model, scaled by
03 and applied only to the diagonal elements of the covariance
matrix. The covariance vector k and variance x from Eq. 6
can be expressed in terms of the covariance function as

ki = C(Xi,XN+1)7 izl,...,N,
k = C(xnt1,XN41) =61+ 62+ 65.

(13)
(14)

A. Optimizing the Hyperparameters

The GP employs a set of hyperparameters 6 = {61,605, 03,
r1,72,...7,} Which can be set by the user or optimized
such that the log-likelihood of the given function values ty
under the multivariate Gaussian with zero mean and covariance
Cy = C(Xn,0) is maximal. This log-likelihood and its
derivative with respect to 6 can be expressed as

L = log(p(tn|Xn,0)) (15)
1
= (logdet Cy + t{ Cx'ty + Nlog2n)
oL 1 _
5% = 5(t—,%l"]\,CJ\,ltj\; — trace(T')) , (16)
oC
= 717]\[
where Iy = Cj 20

Gradient-based or evolutionary algorithms can be used to
optimize the hyperparameters, each with their own advantages.
Gradient methods are fast local optimizers of smooth functions
for which the analytic gradient is available, as is the case here.
However, MacKay [12] shows that the hyperparameter opti-
mization landscape is multimodal. This suggests that a slower
but more robust global optimizer, such as an evolutionary
algorithm, may yield better results.

We therefore use both an evolutionary algorithm (CMA
[1]) and a quasi-Newton gradient method (BFGS [23]) in

combination. CMA is always used for the first optimization of
the likelihood in order to identify the global minimum. In our
experience it suffices to limit CMA to 3000 likelihood eval-
uations. To track adjustments to the optimal hyperparameters,
e.g., after additional data points have been added, we employ
BFGS as a fast optimizer, coupled with a line search by golden
section (see, e.g., [24]). The initial step size for each line
search is set to 10% of the search space in order to escape local
minima. For BFGS, we found that computing 20 gradients
and evaluating 20 points in the line search is sufficient. After
optimizing the likelihood 10 times with BFGS, CMA is used
again to avoid getting trapped in a local minimum.

To simplify the setting, we normalize the training data such
that function values lie within [0, 1] and decision variables
within [—1,1]. We then enforce the following bounds on the
hyperparameters:

0, € [10_3, 1]
0, € [10_3, 1]
03 € [1072,1072]
ri € [1072,10], i=1,...,n

Since the ratios of upper to lower bounds are very large, we
operate with the log of the hyperparameter values, as proposed
by Williams [25]. If the computation of the inverse of Cy
fails too often during optimization, we can increase numerical
stability by raising the lower bound on 6s.

B. Computational Cost

The main equations of the GP are Eqs. 10 and 11 for
predicting the mean and standard deviation of a new data
point, and Egs. 15 and 16 for optimizing the hyperparame-
ters. Although all four equations contain the inverse of the
covariance matrix CX,I, the explicit inverse is only needed to
compute the gradient of the log-likelihood in Eq. 16, required
only for gradient-based optimization algorithms. The other
equations contain the product of the inverse with a vector,
which amounts to solving a linear system of equations. We
can avoid computing the explicit inverse by performing an
LU decomposition of Cy:

Cy=LU, 17
where L and U are a lower and upper triangular matrix,
respectively. The LU decomposition can be computed in order
O(N?), and is numerically more robust than operating with
the explicit inverse. Then, after calculating Cx,lt N via the LU
decomposition in O(N?), predicting mean and standard devi-
ation for a new point xx 1 are of order O(N) and O(N?),
respectively. The log-likelihood for a given LU decomposition
and Cy'ty can also be obtained in O(N), provided the
determinant is computed as proposed in Eq. 18 below.

The gradient of the log-likelihood requires explicit compu-
tation of C;,l, which is about 3 times as expensive as the
LU decomposition. Evolutionary algorithms typically require
more evaluations but do not need gradient information, so
each evaluation is cheaper. For large N several methods for
computing sparse covariance matrices have been proposed
(e.g., [26]) which we do not pursue here.
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C. Numerical Difficulties

We encountered numerical problems in computing the log-
likelihood according to Eq. 15. Specifically, for N > 30 the
determinant of the covariance matrix can underflow IEEE 754
double precision floating-point arithmetic, especially if the
covariance matrix is ill-conditioned.

Gibbs and MacKay [27] avoid computing the log-likelihood
by using only gradient information in their conjugate gradient
implementation, including their line search. By contrast, we
prefer the likelihood over its gradient since it is computation-
ally cheaper, and allows us to use direct search methods such
as evolutionary algorithms. We rewrite the computation of the
determinant in the following numerically more stable form:

N
Z (10g Lii + log U”)

i=1

logdet Cny = (18)
In words, we compute the log-determinant as a sum of logs
of the elements in the trace of the L and U matrices. All
quantities in this computation remain within machine precision
even where the determinant itself would underflow.

IV. GAUSSIAN PROCESS OPTIMIZATION PROCEDURE

We propose an optimization procedure based on the sur-
rogate approach that uses a Gaussian process as an inexpen-
sive model of the objective function. This Gaussian Process
Optimization Procedure (GPOP) starts from an initial set of
points, obtained, e.g., from previous optimization runs, by
random sampling, or a short run of a conventional optimization
algorithm. Our optimization loop then proceeds as follows:

A GP is constructed for the given data set, and the hyper-
parameters are optimized. An Evolutionary Algorithm (EA)
is then used to search for minima of the GP prediction,
using several merit functions as fitness functions for the EA.
Finally, the resulting minima are evaluated on the objective
function and added to the data set. These three steps constitute
one iteration of GPOP, and are repeated until a termination
criterion is reached.

In the following, we discuss merit functions, describe
techniques to limit the training effort of a GP to the local
neighborhood of the best solution found so far, and show
how real world problems with more than one objective and
constraints can be handled.

A. Merit Functions

Searching the GP for the minimal predicted value ¢ exploits
the knowledge of the GP to find the most promising candidate
for reducing the objective function value. However, this carries
the risk of premature convergence to non-optimal solutions [3],
[5]. To improve the prediction quality of the GP and promote
a more thorough global search, there is also a need to explore
new regions of decision space.

To balance exploration with exploitation, Torczon and Tros-
set [3] propose a merit function fy; which adds a density
measure to the predicted function value # so as to promote
unexplored regions of the decision space. One possible density
measure is the maximin distance [28], i.e., the distance to the
closest evaluated point. Another possibility is the predicted

standard deviation o; of the GP, as proposed in [15]. Both
measures are minimal at known data points and increase with
distance to evaluated solutions. In contrast to the standard
deviation, however, the maximin distance is not bounded for
unbounded search spaces, and its derivative is discontinuous at
all positions equidistant from the two closest evaluated points.
We therefore prefer the standard deviation, and define the merit
function fy; as

mx) = t(x) — ao(x), (19)
where a > 0 balances the two terms by scaling the density
measure. (For maximization problems a must be negative.)

We optimize 4 merit functions, using o = 0, 1, 2, 4, respec-
tively. Setting a@ = 0 exploits the information of the model
by searching for the predicted minimum. By contrast, o = 4
strongly pushes the optimization into unexplored regions. The
resulting minima can be evaluated in parallel, and updating
the GP with several evaluations at a time also serves to reduce
the number of GPOP iterations. In our experience, using more
than 4 merit functions is not beneficial for the convergence of
the optimization.

B. Local Modeling and Local Search

Both global and local fitness function models are considered
in the literature. While global models use all evaluated points,
local models only take into account points from a certain
region of decision space. Although they thus throw away
information, local models have a number of advantages: the
precision of any model is limited, and is mainly determined
by the difference in the objective function values among
the points being modeled. For complicated (e.g., multimodal,
discontinuous) function landscapes it may not be feasible to
build an accurate global model at all. Finally, since they use
less training data, local models typically carry a far smaller
computational cost.

Since we want to converge towards the optimum with arbi-
trary precision, we restrict our model to the local neighborhood
of the current best solution x"°**, We use as training data for
the GP the union of the N points closest to xP*' in the
decision space, and the Nr most recently evaluated points.
The closest points serve to model the neighborhood of xP°st,
while the most recent points are included to allow the data set
(and hence the model) to evolve even when the N¢ closest
points remain the same.

To avoid searching areas that may be poorly modeled, we
also restrict the search to a hypercube around the current best
solution:

xPest_ d/2 < x < xPSt4d/2, (20)

with the hypercube’s diagonal d set to reflect the spread of
the N¢ closest points:

d; = mfmx(xc,i) - mcin(scc’i), 20
where ¢ indexes the dimensions of the search space, and c the
N¢ closest points. Thus the search space moves around with

the current best solution.
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C. Enhancements for Real-World Applications

GPOP was designed to model a single fitness function.
For real-world applications this fitness function will typically
be composed of several objectives as well as penalties for
constraint violations. To model such a complex aggregate of
functions with a single GP may prove difficult. We therefore
model each objective and penalty by its individual GP, and
construct the overall fitness function model as an aggregate
of all GPs. While this is computationally somewhat more
expensive, it leads to a more accurate model of composite
fitness functions.

In real-world applications, the objective or constraint evalu-
ation might fail for some points, due to an infeasible design or
inadequacies of the evaluation code. Such failed evaluations
should not be used for training the GP [4]. We initially require
N¢ /2 points for training the GP, which we generate with
CMA. If some of the evaluations fail, CMA is used to produce
an additional N¢ /2 points at a time, until at least N¢ /2 points
have been evaluated successfully. After this initialization, the
iterative optimization procedure is started. In each iteration, the
local GP models are constructed for the current data set. Then
the minimum for each merit function is located, evaluated on
the expensive fitness function, and added to the training data.

If in one iteration the evaluation of all points fails, the
GP models remain unchanged. To avoid stagnation in this
situation, we add a small Gaussian perturbation x2 of the
current best solution x"°* to the training data:

el = bt 4 2id;/100,

; zi ~N(0,1) (22)

With these enhancements, our GPOP can be summarized as:

while less than N¢ /2 points evaluated successfully:

o use (2,10)-CMA to generate N /2 points
« evaluate them on expensive fitness function

while termination criterion not reached:

« find xPest, the best of all points evaluated so far
o training set = N points closest to xPest

+ Ngr most recent successful evaluations
« for each objective and constraint:

— optimize GP hyperparameters (Egs. 15-18)

— for each merit function (Eq. 19):
find predicted optimum (Egs. 10-14)

o remove optima that have already been evaluated
« cvaluate new optima on expensive fitness function
« while no evaluation successful:

— generate and evaluate perturbation (Eq. 22)

V. PERFORMANCE ANALYSIS

We analyze the performance of GPOP on three unimodal
test functions [1] with different properties (a simple quadratic
function, Schwefel’s function, and Rosenbrock’s function) and

Fig. 1.

Contour plots of the sphere function (upper left), Schwefel’s function
(upper right), Rosenbrock’s function (lower left), and Rastrigin’s function
(lower right); all in two dimensions.

on a multimodal function (Rastrigin’s function):

fsphere(x) = szza (23)
’Lzl i )
fschwefel(X) = Z zi |, (24)
i=1 \j=1
n—1
Frosen(x) = Y _ (100(zi41—27)% + (1—12;)%) (25)
i=1
frastrigin(X) = 10n+ Y (27 — 10cos (272;))  (26)
i=1

For all functions, the minimal function value is f = 0 and
the search space is restricted to z; € [—10,10]. For the
three unimodal functions, we measure the number of function
evaluations required to reach a function value smaller than
f = 1019, For the multimodal function, we analyze the
capability of the algorithm to converge to the global optimum.
Thus, we measure the final function value as soon as the
algorithm is caught in a local minima. GPOP is assumed
to be caught, if the size of the local search area is smaller
than f = 1075, Four different training set sizes with: Ny =
N¢ = 15,30,60, 120 are analyzed. The results are compared
to CMA, an evolutionary algorithm known to perform well
on all three unimodal functions [1]. The results represent
always the mean of 5 independent optimization runs. Different
problem dimensions were analysed. If for a certain dimension
and training set size, no result is given, then this is due to a
too poor convergence compared to CMA.

A. Sphere function

The minimum of the sphere function is at x = 0. Its
contours (Fig. 1, left) are hyperspheres in decision space,
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Fig. 2. Mean number NN of function evaluations against problem dimension-
ality n to reach fsphere = 10710 for GPOP with training set size Ng = N¢
=15 (0), 30 (x), 60 (+), and 120 (A), compared to CMA (unmarked).

making this function trivial to optimize. Results for GPOP
and CMA are shown in Fig. 2, plotted against the problem
dimensionality n on a log-log scale.

The number N of function evaluations required increases
with n for both algorithms. The increase gets steeper for
GPOP past a certain threshold dimensionality, beyond which
the training data no longer suffices to model the function well,
and the algorithm gets inefficient. As a rule of thumb, this
threshold is located at about n = N¢/2. In other words, for
a sphere function in n dimensions we should have a training
set of N¢ > 2n points, with Ny = Ng. As long as this rule
is obeyed, GPOP requires about 4 to 5 times fewer function
evaluations than CMA.

B. Schwefel’s function

The minimum of Schwefel’s function is also at x = O0;
its contours are hyperellipsoids (Fig. 1, center). Note that
the principal axes are not parallel but rotated relative to the
coordinate axes of the decision space: Schwefel’s function is
non-separable, i.e., the decision variables are highly correlated.
In contrast to CMA, which was designed to be invariant to
such rotations [1], our GP scales the covariance function by
a separate hyperparameter along each dimension, and is thus
sensitive to them.

Nevertheless, our results for Schwefel’s function (Fig. 3)
indicate that our GP is able to model non-separable functions,
and GPOP can optimize them efficiently. The number N of
function evaluations required to converge is about the same as
for the sphere function, again outperforming CMA by a large
factor. For efficient optimization, however, more training data
should be used, due to the more complex function topology
and the correlation of the decision variables. While the precise
threshold for the training set size is less clear here, as a rule
of thumb we might require N¢ > 8n points, with Ng = Nc.

C. Rosenbrock’s function

Rosenbrock’s function is also non-separable, with highly
correlated decision variables. As an added difficulty the min-
imum is located (at x = 1) in a long, flat-bottomed, curved,
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Fig. 3. Mean number N of function evaluations against problem dimensional-
ity n to reach fychwetel = 10710 for GPOP with training set size Ng = N¢
=15 (o), 30 (x), 60 (+), and 120 (A), compared to CMA (unmarked).
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Fig. 4. Mean number N of function evaluations against problem dimension-
ality 7 to reach fRosen = 10710 for GPOP with training set size Ng = N¢
=15 (0), 30 (x), 60 (+), and 120 (A), compared to CMA (unmarked).

and narrow valley (Fig. 1, right). Both algorithms consequently
require more function evaluations, as shown in Fig. 4. The
performance gap between GPOP and CMA has narrowed but
is still evident, provided that GPOP is given N¢ > bn training
data points, with Ng = N¢.

D. Rastrigin’s function

Rastrigin’s function is a superposition of the sphere function
and a cosine function with a high oscillation frequency and
amplitude. The global minimum is located at (at x = 0). In
Fig. 5 and 6, CMA is compared with GPOP. For Rastrigin’s
function, we are interested in the global convergence and not
the convergence speed. Thus, each optimization runs until the
algorithm converged to a local or the global minimum. An
algorithm is considered converged as soon as the step size
(CMA) or the local search area (GPOP) is 10~ times smaller
than the size of the surrounding valley, which is = 1. In
the figures, the final function value f; of the optimization
is plotted. The square root of f; is equal to the distance of
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Fig. 5. Final function value fy of the converged optimization run on

fRastrigin against problem dimensionality n for GPOP with training set
size¢ Ng = N¢ = 15 (0), 30 (x), 60 (+), and 120 (A), compared to CMA
(unmarked).

the final point to the optimum.

In Fig. 5, the same settings for GPOP are used as for the
three unimodal functions. The figure shows that GPOP and
CMA are not able to determine the global minima for n >
2. This is due to the large number of local minima and the
high oscillation amplitude of the function between the minima.
For the standard settings, CMA performs better then GPOP.
However, with increasing training set for GPOP and problem
dimension the difference between CMA and GPOP decreases.

There are several possibilities to improve the performance
of GPOP on multimodal functions:

« larger values of « in the merit function would promote
better exploration of the search space.
« multiple local search spaces (e.g., around the best Npest
solutions) would facilitate recovering multiple minima.
« increasing the noise level A3 of the GP model leads to a
smoother approximation of the fitness function; this may
remove the local minima from the GP model.
In Fig. 6, the third possibility was chosen and the noise
level was fixed at #3 = 0.01. With this setting and training set
size of 60 to 120, GPOP performs similar to CMA.

E. Summary of the Performance Analysis

GPOP has been shown to be capable of optimizing difficult
test problems. Furthermore GPOP has proven to be an efficient
optimization procedure as it requires less function evaluations
than CMA to find the minimum of three unimodal functions
within given precision.

The performance of GPOP is dependent on the training
set size as sufficient training data is required for adequately
modeling the fitness function. For all considered test problems,
a rule of thumb for setting the training set size is given as a
function of the problem dimensionality. Following this rule,
GPOP requires on average about 3 to 6 times less function
evaluations than CMA.

Compared to CMA, a main drawback of GPOP is the higher
computational cost of the optimization procedure. The cost
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Fig. 6.  Final function value f; of the converged optimization run on

fRastrigin against problem dimensionality n for GPOP with training set size
Ngr = Nc¢ =15 (0), 30 (x), 60 (+), and 120 (A), and a fixed hyperparameter
value 63 = 0.01 , compared to CMA (unmarked).

scales O(N?3) with the training set size and is only O(N)
with the problem dimension. Thus, GPOP should mainly be
applied to expensive optimization problems, requiring at least
several seconds of CPU time per function evaluation. The
computational expense is also the reason why the training set
size was limited to 120. With this training set size GPOP
is more efficient then CMA on problems with a problem
dimension of up to 16-64 decision variables.

For the multimodal Rastrigin’s function, CMA performs
better than GPOP when comparing the final function values.
However, several ways to improve the performance of GPOP
exist, and by adding white noise with variance 3 = 0.01 to
the GP model we have obtained performance similar to that
of CMA.

It is subject to future studies to analyze the performance
of GPOP on a wider set of test functions with different
optimization difficulties. This has already been done for CMA.
In [1], CMA was analyzed on a set of unimodal test functions.
Recently, CMA was furt