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Introduction

Recent work suggests that fluctuations in dopamine delivery at target structures represent

an evaluation of future events that can be used to direct learning and decision making. To

examine the behavioral consequences of this interpretation, we gave simple decision

making tasks to 66 human subjects and to a network based on a predictive model of

mesencephalic dopamine systems. The human subjects displayed behavior similar to the

network behavior in terms of choice allocation and the character of deliberation times. The

agreement between human and model performances suggests a direct relationship between

biases in human decision strategies and fluctuating dopamine delivery. We also show that

the model offers a new interpretation of deficits that result when dopamine levels are

increased or decreased through disease or pharmacological interventions. The bottom-up

approach presented here also suggests that a variety of behavioral strategies may result

from the expression of relatively simple neural mechanisms in different behavioral

contexts.

Decision Making

Even for the simplest creatures, there are vast complexities inherent in any decision-

making task.  Nonetheless, any creature has limited available time in which to arbitrate

decisions.  Decision-making is likely to possess automatic components which may possess

direct relationships to the underlying neural mechanisms.  Previously, decision-making

theories have been based on formal, top-down approaches that produced normative
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strategies for decision makers, i.e., they prescribed strategies that ought to be followed

under a predetermined notion of the goal (Bernoulli, 1738; Von Neumann and

Morgenstern, 1947; Luce and Raiffa, 1957) (see endnote 1).  Although normative

accounts may produce functional descriptions of behavior that match experimental data,

they do not yield a well-specified and testable relationship to potential neural substrates.

Recent work suggests the existence of covert neural mechanisms that automatically and

unconsciously bias decision-making in human subjects (Bechara, 1997). Consonant with

this latter work, recent work on midbrain dopaminergic neurons suggests that their

activity may participate in the construction of such covert signals, and thereby provide a

more bottom-up explanation for decision-making strategies employed by animals

(Montague, et al., 1995; Egelman, et al., 1995; Montague, et al., 1996; Schultz, et al.,

1997; Egelman, et al., 1998).

Specifically, studies on neuromodulator delivery in behaving animals (Wise, 1980; Wise

and Bozarth, 1984; Romo and Schultz, 1990; Schultz, 1992; Ljunberg, et al., 1992;

Aston-Jones, 1994; Mirenowicz and Schultz, 1996) suggest that changes in dopamine

delivery represent errors in predictions of the time and amount of future rewarding stimuli

(Montague, et al., 1996).  Models based on this interpretation account for physiological

recordings from dopamine neurons in behaving primates (Montague, et al., 1996; Schultz,

et al., 1997), and capture foraging behavior of bees (Montague, et al., 1995).  This

computational interpretation suggests that a behavioral meaning may be associated with

dopamine delivery: increases from baseline release mean the current state is ‘better than

expected’ and decreases mean the current state is ‘worse than expected’ (Quartz, 1992;

Egelman, et al., 1995; Montague, et al., 1995; Montague, et al., 1996).  In this paper, we

explore the hypothesis that this behavioral interpretation of fluctuating dopamine delivery

provides one simple bottom-up model of how dopaminergic (or related) projections

implement general constraints that influence ongoing decision-making in humans. Such a

model provides useful meeting grounds for the psychology and neurobiology underlying

human decision making.
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Methods

As described in the legend of Figure 1, our model is based on a simplified anatomy of the

mesencephalic dopamine systems.  We begin with the hypothesis that such an anatomy

comes with commensurate computational principles (Quartz et al, 1992; Egelman et al,

1995; Montague et al, 1996; see also papers on temporal difference algorithms, e.g.,

(Sutton, 1987; Sutton, 1988; Sutton, et al., 1990)) (endnote 2). Specifically, we note that

the rich arborizations of midbrain dopaminergic axons could deliver a global, scalar

prediction error to the cortex.  The cortex, driven by incoming polysensory information,

could construct and deliver convergent neuronal activity to midbrain nuclei in the form of

a temporal derivative.  The output of a midbrain neuron is used in dual roles: (1) to update

synaptic weights after each selection, and (2) to bias the process of making a selection.  In

other words, each option the model ``looks at’’ has a commensurate pattern of cortical

activity (which is filtered through associated weights); simply “considering” the choice

(not selecting it) will generate the δ(t) signal, and such a signal is used to commit to

decisions (see full description, Figure 1).
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Figure 1. Bottom-up interpretation of decision-making model.
Choices A and B are represented by separate patterns of cortical activity, each associated with a modifiable
weight w(i,t), where i indexes A or B.  In the figure, ws are represented by the 2 circles in the intermediate layer.
P is a linear unit representing a midbrain neuron with output: δ( ) ( ) &( ) ( )t r t V t b t= + +
r(t) is input from pathways representing rewarding stimuli (marked “Reward” in figure), &V (t) represents a
scalar surprise signal which arrives from the cortex in the form of a temporal derivative of net excitatory
activity, b(t) is P’s baseline activity level which is set to 0. Here, &V (t) is taken as a one time-step difference V(t)
- V(t-1) where V t x i t w i t

i
( ) ( , ) ( , )= ∑ , and x(i,t) is the activity associated with choice i at time t. In this case,

there are only 2 xs, each representing one of the choices, and each using a binary activity level: 1 when a choice
was being “considered”, 0 otherwise.  δ(t) is a signed quantity which we interpret as fluctuations in dopamine
delivery to targets above (δ(t) > 0) and below (δ(t) < 0) baseline levels (see Montague et al, 1995, 1996). In this
form, δ(t) is interpreted as an ongoing prediction error between the amount of reward expected and the amount
actually received (Sutton, 1987; Sutton, 1988; Sutton, et al., 1990). This prediction error is used to direct
selections and to update the weights w(i,t) (the internal model).

Making selections using ongoing prediction error.  The model chooses among alternatives by making random
transitions from one alternative to another which induces fluctuations in the output, δ(t), of neuron P. The output
δ(t) controls the probability ps of making a selection on a given transition (see endnotes 4 and 5):

p
m t bs = + − +
1

1 exp( ( ) )δ
Updating the internal model. Weights w associated with each alternative i are updated (after a selection)
according to the Hebbian correlation of P’s output with cortical activity: w i w i x i t tnew old( ) ( ) ( , ) ( )= + −λ δ1
where λ is the learning rate. Varying the network’s parameters had little effect on the final behavioral outcome
(endnote 4). The model relies on a linear predictor; however, it obtains a stochastic component to its decision
behavior through the function ps.  A simple model suffices here because its basic principles are robust.
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To highlight the behavioral consequences of such an interpretation of dopamine delivery,

we designed variations of a two-choice decision task (Vaughan and Herrnstein, 1987;

Herrnstein, 1990; Herrnstein, 1991) which was given to human subjects and to the

network.  The humans were required to select between two large buttons, labeled A and

B, displayed on a computer screen.  After each selection (with a mouse pointer), a

vertical, red slider bar indicated the amount of reward obtained. Subjects were instructed

to maximize their long-term return over 250 selections.  There was no time limit for

making choices. The reward earned at each selection was a function of past selections.

Specifically, the computer kept track of the subject’s last 40 choices, and the relative

fraction of those choices (e.g., the percentage of selections that went to choice A)

determined the amount of reward earned at the next selection of A or B.  Shown in Figure

2 is the fraction of choices to A (of the last 40 selections) versus the reward to be earned if

the next choice is A or B.  Thus, each task amounted to a game wherein the subject’s

‘opponent’ (the reward functions) employed a fixed strategy. The speed with which the

‘opponent’ responded to the subject’s choices was defined by the window size over which

the fraction of choices from button A was computed.
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Figure 2. Four Reward Distributions (with no clear optimum).

Subjects were instructed to maximize long-term return in all four tasks (panels A, B, C, D).  The
reward given after each selection is a function of (1) the button selected, and (2) the subject’s
fraction of choices allocated to button A over the past 40 choices. In all four panels, the lines with
diamonds show the reward from a selection of button A at a given choice allocation; the crosses
show the reward earned from selecting button B.  The unmarked line indicates the expected value
of the reward for a fixed allocation to button A.  For each subject, the square marks the average
allocation and average earned reward after a trial of 250 selections.

(A) In this reward paradigm, the expected value of the earned reward is the same regardless of
choice allocation.  Subjects’ average allocations lie just to the right of the crossing point of the
functions (mean allocation: human=0.411±0.003, network=0.380±0.001; n=18).

(B) Reward functions reflected around the crossing point. Subjects cluster at a higher allocation to
A, suggesting that the attractant is the crossing point and not some local features experienced as
the crossing point is approached. This point is further strengthened in Figure 3. (mean allocation:
human=0.605±0.002, network=0.596±0.001; n=19).

(C) The grouping of subjects near the crossing point is generally unaffected by local features such
as the larger differentials in reward for allocations to A between 0.7 and 1.0. (mean allocation:
human=0.430±.003, network=0.374±0.001; n=19).

(D) Pseudo-random reward paradigm.  Subjects receive a fixed, pseudo-randomized sequence of
reward yielding a mean close to 0.3. Subjects display a mean allocation of 0.501±0.002 (n=19),
confirming a central tendency in these two-choice tasks.  Network mean allocation=0.498±0.007,
n=19.  These reward functions were chosen loosely for their general shape; our observations
indicate that the overall shape, but not the finer details, influences the general behavior displayed
by subjects.
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Results

The experiments shown in Figure 2 assay choice behavior under conditions where every

allocation strategy earns the same long-term return. The primary difference among the

tasks is the local structure in the reward functions. In the tasks displayed in Figure

2(A,B,C), humans and networks converge quickly to a stable strategy, making choices

that tend to equalize the return from the two alternatives. Such behavior is described as

event-matching (endnote 3). The mean allocation to choice A settled close to the crossing

points in the reward functions, with a slight central tendency.  The existence of the central

tendency was confirmed using a randomly distributed reward schedule (Figure 2D): under

these random returns, both humans and networks equalized their allocations to A and B

To spotlight how a simple underlying mechanism can appear to express different behaviors

in different contexts, we engineered two more choice tasks (Figure 3).  In the first, the

optimal strategy lies at the crossing point of the reward functions; in the second, an

allocation at the crossing point is highly suboptimal.  Figure 3A quantifies the subjects’

behavior on the first task: most subjects (18 of 24) maximized their long-term return.

However, in the second context (Figure 3B), the same attraction to the crossing point

blinds them to higher long-term profit: over half (14 of 25) of the subjects converged to

the crossing point even when other allocations yielded much higher return. As shown,

higher allocations to A yield increasing reward. The result demonstrates the strong

influence of the crossing of the reward functions since both the optimal allocation point

and the central tendency point lie to the right of the crossing point. The histograms in

Figure 3 show the results of the network on the same tasks.  Given the simplicity of the

model and the many levels of human strategies, we are not surprised to find differences in

the histogram, such as the rightward tails in the human data.  However, the result is

instructive in the character of the match: the majority of subjects allocated their behavior

at the crossing point of the reward functions, which, in Figure 3B, is highly suboptimal.
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Variation in the free parameters over an extremely broad range does not qualitatively

change the behavior of the network (see endnote 4).
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Figure 3. Context dependence of strategy selection for model and human.
Subjects and networks pursue optimal or suboptimal strategies depending on the context of the
task. Lines with diamonds show the reward from a selection of button A, crosses show the reward
earned from button B, and the unmarked line indicates the expected value of the reward for a given
allocation.
(A) In this reward paradigm, the optimal allocation to A is the same as the crossing point of the
reward functions (0.35).  Subjects approximately maximize their reward on this task (mean
allocation=0.366±0.002, n=26).  Cumulative allocation histograms from humans and networks
show that both groups stabilize around an allocation to A just to the right of the crossing point of
the reward functions (network mean = 0.383±0.0009, n=26).
(B) This reward paradigm demonstrates that over half the subjects (14 of 25) settle into a stable
behavior at the crossing point even when such a strategy is vastly sub-optimal. Here the most
profitable strategy is total allocation to A. Subjects are drawn to the crossing point even when it
lies to one side of both the optimal allocation and central tendency allocation.
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The results of Figure 2 and Figure 3 can be understood by noting that the network tends

to implement a greedy decision-making strategy, and that the cost functions associated

with these tasks possess global minima at the crossing point of the reward functions.  In a

greedy strategy, the decision-maker compares the expected returns from alternative

choices, and then selects the one that is likely to be most profitable (see endnote 5).  On a

task such as the one pictured in Figure 3A, greedy strategies will converge quickly to the

crossing point of the reward functions (Borgstrom, 1993; Kilian, 1994).  For the task

shown in Figure 3A, a strategy converging to the crossing point will be called “optimal”,

whereas in Figure 3B it may be called “risk-averse”.  Such observations verify that

different behaviors can be expressed by a simple underlying mechanism expressed in

different behavioral contexts.

The model captures not only human allocation behavior, but also the deliberation times

between choices. In all tasks, human subjects had no time pressure between selections.  In

spite of the broad range of interselection delays (mean = 0.793 sec, sd = 2.01 sec), human

subjects demonstrated stable choice-dependent dynamics, i.e., choice allocation was

independent of deliberation time.

Figure 4 shows some typical examples of the interselection delays for the task shown in

Figure 3A.  Note that while the subjects’ allocations to button A fluctuate smoothly

around the crossing point in the reward functions (0.33), the delays are uncorrelated

(average correlation coefficient = -0.2).  Such data suggest that subjects update their

internal models at the time of each button choice, in a fashion independent of the delay

between choices.  The network model, updating its weights only at each choice, captures

the delay-independent dynamics of the humans.
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Traditional decision-making theories (especially those following the tradition of expected

utility theory) are deterministic, i.e., preference of A over B is either true or false.  Such

theories have consistently fallen short in explanations of observed human decision making,

both in terms of choices and the distribution of deliberation times (Busemeyer, 1993).  To

date, delay distributions have only been successfully captured by non-deterministic models

(Carpenter and Williams, 1995).  It may be the case that preference and deliberation times

cannot be studied separately; our model addresses both properties of decision-making by

appealing to a common underlying mechanism.
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Figure 4. Decision dynamics are independent of delays in both humans and networks.
(A) The inter-selection delays and allocation to A are plotted for a typical subject
performing the “matching shoulders” task (seen in Figure 3A; so named because of the
matched peaks of the reward functions).  Note that the delays vary widely, even while the
allocation to A smoothly oscillates around the crossing point (0.35) of the reward functions.
In the model, the oscillations come about because the difference in rewards from A and B
becomes reflected in the difference of weights wA and wB.  This in turn drives the system
toward more selections from the choice with higher weight.  The averaged allocation is thus
driven to the other side of the crossing point, where the same process begins again.  The
correlation of delay times with the subjects allocation to A, over all subjects, yielded a
correlation coefficient of 0.0117.
(B) Network’s behavior on the same task.  The network’s delays are defined as being
proportional to the number of transitions made between alternatives before the model
committed to a selection (see definition of decision function ps in legend of Figure 1).
Network correlation coefficient = 0.0137.  The constant of proportionality that relates a
network transition to seconds is taken to be on the order of 200msec, which is the
physiologically characterized time of dopamine transients in alert monkeys performing
similar tasks (Romo and Schultz, 1990).
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The relationship of choice preference and delay behavior suggests some new

interpretations of lesion, disease, and drug effects on dopaminergic systems.  We begin by

simulating a blunting of the dopamine neuron’s output signal δ(t): such a blunting might be

expected following a blockade of dopamine receptors. Results are shown in Figure 5A,

where the model is presented with the decision task from Figure 2A, but with a 90%

reduction in the magnitude of δ(t). The mean allocation to button A shifts from the

crossing point (0.35) to random (0.5) with no concomitant change in inter-selection

delays.

Figure 5B tests the model on the same task, but with a nonspecific decrease in the average

amount of dopamine delivered to targets; the baseline (average) of δ(t) is reduced with no

change in its sign or magnitude (Figure 1). The result is a dramatic increase in delay times

with no change in choice allocation. The model follows its usual strategy, however, it

takes a prohibitively long time to make a choice.  Observers of such a symptom in a

patient might interpret this change as a motor deficit, or “sluggishness”. Such a non-

specific baseline reduction in dopamine levels and the ensuing increase in the time-to-

selection is reminiscent of symptoms associated with Parkinson’s disease. This disease is

characterized biologically by degeneration of dopamine cells in the substantia nigra (see

endnote 6) and typically includes a slowing in the initiation and execution of voluntary

movements and motor sequences.
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The results in Figure 5B suggest that Parkinson’s patients may retain the ability to

construct appropriate error signals to influence ongoing decision-making---however, the

dramatic decrease in average baseline dopamine levels prevents the proper use of this

information at the level of target structures.  In other words, the non-specific decreases in
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Figure 5. Some predicted effects of pharmacology, lesion, and disease.

(A) The blockade of dopamine receptors (as by neuroleptics) is modeled by blunting the effects of
dopamine release at the target regions. Using the task in Fig 3A, the average choice allocation
shifted from 0.35 allocation to A to random (0.5 allocation to A).  Interselection delays (not
shown) were unaffected.

(B) The destruction of input to dopamine neurons (as by a lesion in the cortex), or the degeneration
of dopaminergic neurons (as in nigro-striatal pathway loss in Parkinson’s disease) is represented
by shifting δ(t) to a lower baseline level.  Thus, while dopamine neuron output continues to
fluctuate appropriately, the reduced baseline component leads to a dramatic increase of
interselection delays.  Choice strategies are unaltered but are interpreted as being prohibitively long
(mean allocation to A = 0.369±0.001 in normal network, 0.347±0.002 in diseased network, n=26).
Mean delay in the normal network = 1.99±0.002 seconds, in the diseased network mean delay =
7.29±0.012 seconds.  Graph is shown only to 16 seconds; maximum delays reached 151 seconds in
the ‘diseased’ network.
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baseline dopamine levels could result in dramatic changes in motor behavior: while the

plans remain intact, the time to arbitrate a selection among plans increases.  See (Berns,

1996) for a similar interpretation of sequence selection.

Accordingly, the model predicts that a return to normal baseline dopamine levels, which

would return fluctuations of neuromodulator release to an appropriate operational range,

would restore selection times to normal.  This interpretation is consistent with the

systematic and highly successful use of L-dopa (dopamine precursor) with Parkinsonian

patients (Hornykiewicz and Kish, 1987; Agid, 1989).

A reduction in the baseline (average) of δ(t) might also result from damage to prefrontal

cortex. Humans with damage to the ventromedial sector of the prefrontal lobes present

with deficits in decision-making and planning skills (Eslinger, 1985; Damasio, et al., 1990;

Bechara, 1994; Damasio, 1994; Bechara, 1995).  Patients can be well aware of

contingencies of the decision and can enumerate differences between choices, but have

difficulty concluding with a decision. In the model, as before, such a lesion to the frontal

lobes might be represented by a sustained decrease in the baseline (average) of δ(t)

because of the lack of cortical influence on the output of midbrain dopamine neurons. This

change would lower significantly the probability of making a choice independent of the

capacity to categorize or assess the value of the choice.

Conclusions

The results verify that for simple decision-making tasks, especially when information about

the task is impoverished, human choice behavior is capable of being characterized by a

simple neural model based on anatomical arrangements, physiological data, and a set of

well-understood computational principles.  The mesencephalic dopaminergic system

fulfills the requirements of the model; however, we note that related projections (such as

the cerulean noradrenergic system) may fulfill or contribute to the same roles.  We have

engineered choice tasks that highlight certain behaviors of this system (such as suboptimal

choice allocation), and presented the task to 66 human subjects.  The close match of the

human and model data supports a direct relationship between biases in human decision
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strategies and fluctuating neuromodulator delivery.  Although humans surely have

sufficient memory capacity to learn long-term strategies, their mechanisms appear to be

tuned to use short-term information to arbitrate decisions under rapidly changing reward

contingencies. This latter property is reminiscent of the behavior of honeybees on similar

decision-making tasks (Montague et al, 1995).  The bottom-up approach presented here

suggests that a variety of behavioral strategies may result from the expression of relatively

simple neural mechanisms in different behavioral contexts.  Further, the approach suggests

that certain motor deficits may share the same underlying cause as deficits of decision-

making.

Notes

1. The first decision-making theories were normative, meaning they prescribed what

strategies humans ought to follow under a predetermined notion of the goals.  Such

theories, e.g., utility theory (Bernoulli, 1738; Von Neumann and Morgenstern, 1947)

held long influence on economic theory.  However, the systematic study of decision-

making has exposed sets of reproducible behaviors that cannot be fit into traditional

normative frameworks of rational choice (Kahneman and Tversky, 1984). This has

given rise to descriptive theories, some of which are more axiomatic in nature (e.g.,

prospect theory, (Kahneman and Tversky, 1979)), and some of which suggest

architectural components that could implement the theories (Grossberg, 1987).

However, no approaches thus far yield a well-specified and testable relationship to

potential neural substrates.

2. The goal of temporal difference methods is to learn a function V(t) that anticipates

(predicts) the sum of future rewards. As demonstrated in Montague et al (1996), this

simple computational theory captures a wide range of physiological recordings from

midbrain dopamine neurons in alert primates.
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3. Event matching is a well-described behavior displayed by both animals and humans in

choice situations.  It is defined by the “matching” of behavioral investments to the

return on those investments, expressed concisely by:

B
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i
i

j

i
i

∑ ∑= (1)

where Yj is the yield (return) earned from any given behavioral investment, Bj.

Whereas matching behavior is not always optimal, it is generally adaptive (Herrnstein,

1990; Herrnstein, 1991).

4. Initial starting points along the x-axis were varied from 0.0 to 0.95.  The learning rate

λ was varied from 0.1 to 0.9.  The slope m in Fig. 2 was varied from 3 to 50.  The

offset b was varied from 0.0 to 1.0.  Such variations modified the size of the basin of

attraction, the dynamics of the approach, and the character of the delays.  However,

the convergence to the crossing points was unchanged (but see Figure 5).

5. While a decision is being arbitrated, δ(t)=V(t)-V(t)  (see legend of Figure 1).  To

illustrate, when the model `looks’ from choice A to choice B, δ(t)=wB-wA, allowing

the probability of selection to be written:

p
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= + − +
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or (setting b=0),
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which relates our model to a Boltzmann (or ‘soft-max’) choice mechanism, wherein

the probability of making a selection is a function of the changing weights.  Since the

weights will be maximally influenced by the most recent rewards, and the probability
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of selection will be highest for the larger weight, this mechanism engenders a greedy

decision-making strategy.

6.  There are dopamine cells in the substantia nigra that also appear to report prediction

errors in future appetitive stimuli, suggesting that the model may explain some aspects

of the deficits involved in losing the majority of these cells in Parkinson’s disease

(Schultz, et al., 1993).
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